7,577 research outputs found

    Impact of pressure dissipation on fluid injection into layered aquifers

    Full text link
    Carbon dioxide (CO2) capture and subsurface storage is one method for reducing anthropogenic CO2 emissions to mitigate climate change. It is well known that large-scale fluid injection into the subsurface leads to a buildup in pressure that gradually spreads and dissipates through lateral and vertical migration of water. This dissipation can have an important feedback on the shape of the CO2 plume during injection, and the impact of vertical pressure dissipation, in particular, remains poorly understood. Here, we investigate the impact of lateral and vertical pressure dissipation on the injection of CO2 into a layered aquifer system. We develop a compressible, two-phase model that couples pressure dissipation to the propagation of a CO2 gravity current. We show that our vertically integrated, sharp-interface model is capable of efficiently and accurately capturing water migration in a layered aquifer system with an arbitrary number of aquifers. We identify two limiting cases --- `no leakage' and `strong leakage' --- in which we derive analytical expressions for the water pressure field for the corresponding single-phase injection problem. We demonstrate that pressure dissipation acts to suppress the formation of an advancing CO2 tongue during injection, resulting in a plume with a reduced lateral extent. The properties of the seals and the number of aquifers determine the strength of pressure dissipation and subsequent coupling with the CO2 plume. The impact of pressure dissipation on the shape of the CO2 plume is likely to be important for storage efficiency and security

    Theory of controlled quantum dynamics

    Get PDF
    We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.Comment: LaTeX, A4wide, 28 pages, no figures. To appear in J. Phys. A: Math. Gen., April 199

    Magnetic superlattice and finite-energy Dirac points in graphene

    Get PDF
    We study the band structure of graphene's Dirac-Weyl quasi-particles in a one-dimensional magnetic superlattice formed by a periodic sequence of alternating magnetic barriers. The spectrum and the nature of the states strongly depend on the conserved longitudinal momentum and on the barrier width. At the center of the superlattice Brillouin zone we find new Dirac points at finite energies where the dispersion is highly anisotropic, in contrast to the dispersion close to the neutrality point which remains isotropic. This finding suggests the possibility of collimating Dirac-Weyl quasi-particles by tuning the doping

    Von Neumann's expanding model on random graphs

    Full text link
    Within the framework of Von Neumann's expanding model, we study the maximum growth rate r achievable by an autocatalytic reaction network in which reactions involve a finite (fixed or fluctuating) number D of reagents. r is calculated numerically using a variant of the Minover algorithm, and analytically via the cavity method for disordered systems. As the ratio between the number of reactions and that of reagents increases the system passes from a contracting (r1). These results extend the scenario derived in the fully connected model (D\to\infinity), with the important difference that, generically, larger growth rates are achievable in the expanding phase for finite D and in more diluted networks. Moreover, the range of attainable values of r shrinks as the connectivity increases.Comment: 20 page

    The policyscape of transgender equality and gender diversity in the Western Australian education system: A case study

    Get PDF
    In this paper, our purpose is to investigate policy informing texts and discourses referencing transgender equality and gender diversity in the Western Australian education system. Drawing on scholarship from transgender, queer and policy studies, we highlight the interplay of progressive and conservative forces affecting the Western Australian education system’s commitment to supporting transgender and gender non-binary students. Based on a Social Sciences and Humanities Research Council of Canada (SSHRC) project, the paper constructs a Western Australian case study, which threads together the critical examination of policy informing texts, qualitative interview data and media discourses surrounding public narratives, such as the Safe School Coalition Australia’s attempt to implement a school program, which builds awareness about gender and sexual diversity. Emerging through the material, discursive and spatial elements of locales and networks, our case study has the potential to deepen knowledge regarding the heuristic capacity of employing policyscape as an analytic category. In this vein, we draw attention to the possibilities and challenges for re-conceptualizing gender and providing trans-affirmative school spaces that promote equality

    Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

    Get PDF
    Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at http://www.mines.edu/fs_home/whereman

    Dynamic facilitation picture of a higher-order glass singularity

    Get PDF
    We show that facilitated spin mixtures with a tunable facilitation reproduce, on a Bethe lattice, the simplest higher-order singularity scenario predicted by the mode-coupling theory (MCT) of liquid-glass transition. Depending on the facilitation strength, they yield either a hybrid glass transition or a continuous one, with no underlying thermodynamic singularity. Similar results are obtained for facilitated spin models on a diluted Bethe lattice. The mechanism of dynamical arrest in these systems can be interpreted in terms of bootstrap and standard percolation and corresponds to a crossover from a compact to a fractal structure of the incipient spanning cluster of frozen spins. Theoretical and numerical simulation results are fully consistent with MCT predictions.Comment: 4 pages, 3 figures; minor change

    Conductance quantization and snake states in graphene magnetic waveguides

    Get PDF
    We consider electron waveguides (quantum wires) in graphene created by suitable inhomogeneous magnetic fields. The properties of uni-directional snake states are discussed. For a certain magnetic field profile, two spatially separated counter-propagating snake states are formed, leading to conductance quantization insensitive to backscattering by impurities or irregularities of the magnetic field.Comment: 5 pages, 4 figures, final version accepted as Rapid Comm. in PR

    Multi-market minority game: breaking the symmetry of choice

    Full text link
    Generalization of the minority game to more than one market is considered. At each time step every agent chooses one of its strategies and acts on the market related to this strategy. If the payoff function allows for strong fluctuation of utility then market occupancies become inhomogeneous with preference given to this market where the fluctuation occured first. There exists a critical size of agent population above which agents on bigger market behave collectively. In this regime there always exists a history of decisions for which all agents on a bigger market react identically.Comment: 15 pages, 12 figures, Accepted to 'Advances in Complex Systems

    On Civil Education: Beginning A Dialogue

    Get PDF
    In his recent book, The End of Work, economist and political activist Jeremy Rifkin describes the dramatic shift the global economy is undergoing as we enter the next century. Rifkin documents the move from a mass worker economy to a high technology global economy that thrives on the innovations of labor-saving technology and corporate downsizing. In the agricultural, manufacturing, and service sectors, he writes, machines are quickly replacing human labor and promise an economy of near automated production by the mid-decades of the twenty-first century. Rifkin argues that government is also offering fewer employment opportunities, and that the rising high-tech industries are likely to increase the job pool only for a relatively small number of elite workers (1995)
    • …
    corecore